Division Avenue Pumping Station

Allgemeines

FirmennameDivision Avenue Pumping Station
OrtssitzCleveland (Ohio)
StraßeDivision Avenue
Art des UnternehmensWasserpumpwerk
AnmerkungenTeil des Cleveland Water Supply System. Dazu gehören die Maschinenhäuser 1 (1856), 2 und 3 (1874-1897), an deren Stelle teilweise ab 1914 die neue Pumpstation (Front: 285,5 ft., Flügelbauten nördlich: 151 ft., südlich: 117,2 ft., Kesselhaus: 117 x 103 ft.) gebaut wurde. Siehe auch: Fairmount Pumping Station und Kentucky Street Pumping Station
Quellenangaben[Historic American Engineering Record (1978)] [Christman: Division pumping station (1921)]




Unternehmensgeschichte

Zeit Ereignis
1833 Gründung der "Cleveland Water Company" nach den Gesetzen von Ohio, unter einer Gruppe unter Leitung von Philo
Scoville
1840 Der Stadtrat autorisiert den Supervisor of Streets, öffentliche Brunnen von 3,5 feet zu graben, so weit die Kosten je Brunnen geringer als %35,00 sind.
1845 Eine Investorengruppe unterstützt die Immobilienentwicklung am östlichen Ufer des Cuyahoga River am Oxbow
Bend, südwestlich des Public Square. Da das Flußwasser nicht als Trinkwasser geeignet ist, planen die Investoren ein Wasserversorgungssytem mit Quellen am Willeyville Hill westlich des Flusses.
1850 Die "Cleveland Water Company" hat bisher niemals Wasser geliefert, und es ist wenig über deren Pläne bekannt.
1852 Eine Arbeitsgruppe empfiehlt für die Wasserversorgung der ganzen Stadt ein Wasserwerk im städtischem Besitz, einen Wasserturm bei der Euclid Street im Zentrum der Stadt und ein weiteres "low water" Reservoir, eine Pumpstation mit Cornwall-Pumpmaschinen, Wasserförderung vom Erie-See und daß die Stadt den Wasserbauingenieur Theodore R. Scowden Waterworks aus Cincinnati einstellen soll.
22.03.1853 Der Stadtrat nimmt die Empfehlungen der Arbeitsgruppe für die Wasserversorgung von 1852 an und stimmt dem Verkauf von Wertpapieren im Wert von $400.000 für die Errichtung des Werks zu. Scowden wird als Ingenieur eingestellt.
1854 Beginn der Bauarbeiten
19.09.1856 Eröffnung der Wasserversorgung mit Kosten von $513.598,51 für eine Bevölkerung von 30.000
1857 Die durchschnittliche tägliche Förderung beträgt 348.000 Gallonen
1869 Bau des ersten Tunnels unter dem Erie-See. Die Stadt hat zu dieser Zeit 86.000 Einwohner
1900 Vergrößerung des Pumpwerks auf der Westseite und Bau eines großen Speichers auf der Ostseite, gespeist durch die Division-Pumpen
11.02.1904 Die neue Kirkland-Station geht in Betrieb, und als alte Werk an der Division Avenue wird geschlossen, bis die westlichen Tunnels weiter in den See hinein verlängert sind.
Mai 1913 Vorbereitende Arbeiten zum Bau des 10-Fuß-Tunnels von der Verbindung der 5- und 7-Fuß-Tunnel bei Crib 4 zum neuen Einlaßbauwerk, 4 Meilen vom Ufer entfernt.
1914-1918 Bau des Division Avenue Pumping & Filtration Plant auf dem Gelände, das seit 1856 dem Cleveland Water System gehört. Seit der Fertigstellung 1918 können pro Tag 150 Mio Gallonen ins Netz gefördert werden.
27.01.1914 Die Arbeiten für die Filteranlagen beginnen
Febr. 1916 Fertigstellung der Erweiterungsbauten mit Filteranlage
02.02.1918 Die letzte Dampfpumpe (Allis-Chalmers No. 4) geht in Betrieb.
05.08.1977 Letzter Betriebstag der Dampfpumpmaschinen




Produkte

Produkt ab Bem. bis Bem. Kommentar
Trinkwasser 1854 Inbetriebnahme      




Betriebene Dampfmaschinen

Bezeichnung Bauzeit Hersteller
Dampfpumpmaschinen um 1853 Allaire Iron Works
Dampfpumpen um 1871 Cuyahoga Steam Furnace Company
Dampfpumpe um 1871 Worthington Pump and Machinery Corporation
Dampfpumpmaschine 1899/1902 Allis-Chalmers Manufacturing Co.
Dampfpumpmaschinen 1915 Allis-Chalmers Manufacturing Co.
Dampfpumpmaschine 1915 Allis-Chalmers Manufacturing Co.
Dampfpumpmaschine 1898/1902 Kilby Manufacturing Co.
Dampfpumpmaschinen 1901 Holly Manufacturing Co.




Allgemeines

ZEIT1853
THEMAEntstehung des Wasserwerks
TEXTBy the early 1850's the City Council in Cleveland decided that a water system supplying the whole city from a dependable source more extensive than individual wells was needed to meet the needs of a city which had boomed in the 25 years following the opening of the Ohio Canal. In 1852 a committee headed by Mayor William Case was formed to study three possible sources: Shaker Mills, Tinker's Creek and Lake Erie. After some
delays caused by surveyor's errors, the committee reported late in 1852 with these recommendations:
1) a reservior in the form of a water tower be erected near Euclid Street in the heart of the city to provide sufficient pressure for firefighting, which well springs could never provide;
2) a low service reservior for normal drinking and washing supply;
3) the reservoirs to be fed by pumping engines run by steam power (preferably Cornish design engines);
4) the work to be municipally built, owned and operated;
5) the water to be drawn from Lake Erie;
6) and that the city hire Theodore R. Scowden waterworks engineer in Cincinnati, to plan and supervise the construction.
City Council adopted the report on March 22, 1853.10 That same year the council also approved the sale of $400.000 in bonds for the establishment of Water Works Trustees and the erection of the works. With the hiring of Scowden, and his first report in 1853, the municipal water works of the City of Cleveland began to take shape. Although no part of the original installation remains, and all but four engineering drawings have been lost or destroyed with very few photographs or engravings surviving, the design of the system was to determine the future development of the Cleveland water system, and so deserves description. Also, the site chosen by Scowden has been occupied by the water department continuously since that time, it being the site of the present Division Avenue Pumping Station and Filtration Plant. Scowden prepared three different systems, one of which was adopted by the city council. The plan approved for final construction followed the recommendations of the committee of 1852, except that it abandoned the high level water tower on Euclid Street, even though Scowden had originally designed it for one of the other plans substantial structure with "such embellishments" as "would give fine effect to the appearance of the Tower, and lend great attraction to the spot, as a place of public resort." What apparently scuttled this tower was the annexation of Ohio City, on the west bank of the river, which was generally on a higher plateau than the city of Cleveland and afforded a site for a reservoir high enough to obviate the need for a tower. The system approved by the council was to supply an area bounded by the lake on the north, Erie Street (E. 9th) on the east, the Cuyahoqa River on the west, and Eagle Street on the south - a total area of about 1/3 square mile - using 11 miles of pipes. A pumping station located near the shore of Lake Erie, at the foot of Franklin Street, on the city's newly acquired west side, pumped water from the lake to a high level reservoir, also on the new west side, just south of the station, from which the water would be gravity fed to the city. The pumping station was eventually located at the foot of Kentucky Street (W. 33th), with the reservoir at the corner of Kentucky and Franklin Streets. Water from an inlet crib about 300 feet out into the lake traveled by aqueduct from the submerged pipe, around the west bend of the Old River bed, thence eastward to the pump house. The pumping engines, sucking the water out of a rising well, forced the water up to the reservoir. By drawing the water from 300 feet off shore, Scowden felt that in regards to a supply of pure water "... the citzens have no occasion to fear that the lake water may ever be contaminated ...to a degree impairing its pure and healthful quality, at the point where the water flows into the aqueduct pipe for the supply of the pumps." Scowden
estimated that the completed system, designed to supply 100.000 inhabitants, could easily supply a city of twice that population and with "an enlargement of the main pump barrel and plunger to each Cornish engine, which was comtemplated in the plans" the system would be able to serve the city for fifty years. As far as the pumping engines themselves were concerned, Scowden's prediction came true, but the system as a whole became outgrown within 15 years. Two major elements of Scowden's design, the pumping engines and the reservoir, deserve description before we assign them to the historical junkyard.
QUELLEHistoric American Engineering Record (1978)


ZEIT1853
THEMABeschreibung der Cornwall-Pumpen
TEXTWhen steam is admitted above the piston, the space below it is placed in communication with the condenser when the preponderance of pressure upon the upper side forces the piston downward, raising, by means of the walking beam, the plunger and the larger counterweight over it. At the end of the up-stroke the steam admission valve in the exhaust pipe leading to the condenser are closed, while the valve in a pipe connecting the upper and lower ends of the cylinder opens, equalizing the pressure above and below the piston, which allows the counterweight to force the plunder downward and the water out through the discharge valve. A steam pressure of only 21 pound is used, but a vacuum of 26 1/2 inches is usually obtained. The barrel of the steam cylinder is steam-jacketed. The valves are of the poppet type, operated by cams on a rockshaft driven from the walking beam. The cut off on the steam valve and the closing of the exhaust valve may be adjusted independently by means of a screw connected with the valve driving rod. The condenser is of the jet type and the air and boiler feed pumps are both driven from the walking beam. The boiler feed pump draws water from the condenser discharge.
QUELLEHistoric American Engineering Record (1978)